Конденсаторы




КОНДЕНСАТОР - означает накопитель. В радио и электронной аппаратуре конденсатор является накопителем электрических зарядов. Простейший конденсатор состоит из двух металлических пластинок разделенных слоем диэлектрика. Диэлектрик - это материал который не проводит электрического тока и обладает определенными свойствами о которых поговорим чуть позже.

Так как конденсатор является накопителем, то он должен обладать определенной емкостью (объемом для накопления зарядов). На емкость конденсатора влияют площадь пластин (еще их называют "обкладками"), расстояние между обкладками и качество диэлектрика. К хорошим диэлектрикам относятся вакуум, эбонит, фарфор, слюда, полиэтилен, текстолит и много других синтетических материалов.
На рисунке изображен простейший конденсатор с двумя параллельными обкладками площадью S (S = m * n), которые находятся в вакууме на расстоянии d друг от друга.


Если между верхней и нижней обкладками конденсатора приложить напряжение Uab, то на верхней и нижней обкладках конденсатора накопятся одинаковые положительный +q и отрицательный -q заряды, которые называют свободными. Между обкладками возникает электрическое поле обозначенное на рисунке буквой Е.
Емкость нашего конденсатора (обозначается буквой С) будет: С = Eo*S/d, где Ео - электрическая постоянная (для вакуума) Ео=8,854 * 10-12 Ф/м (Фарад на метр).
Если между обкладками поместить диэлектрик,


то ёмкость конденсатора будет: С = Er * Eo *S / d. В формуле расчета ёмкости добавилась величина Er - относительная диэлектрическая проницаемость введённого диэлектрика.
Из формулы следует, что емкость конденсатора увеличивается на величину Er проницаемости диэлектрика. Итак, чем больше площадь S пластин конденсатора, больше значение Er и меньше расстояние d между пластинами, тем больше емкость конденсатора. Основной единицей емкости в системе единиц СИ является фарад (Ф). Емкость 1Ф очень велика. В электротехнике обычно используют дольные единицы емкости:
микрофарада (мкФ), 1мкФ = 1*10-6 Ф,
нанофарада (нФ), 1нФ = 1*10-9 Ф, и
пикофарада (пФ), 1пФ = 1*10-12 Ф.



При выборе диэлектрика для конденсаторов, кроме относительной диэлектрической проницаемости диэлектрика, учитывают еще два важных параметра:
1) Электрическую прочность - прочность диэлектрика при подаче на прокладки конденсатора высокого напряжения. При низкой электрической прочности может произойти электрический пробой, и диэлектрик станет проводником электрического тока;
2) Удельное объемное сопротивление - электрическое сопротивление диэлектрика постоянному току. Чем больше удельное сопротивление диэлектрика, тем меньше утечка накопленных зарядов в конденсаторе.

КОНДЕНСАТОР В ЦЕПИ ПОСТОЯННОГО ТОКА.


Если подключить конденсатор к источнику электрической энергии GB, то в момент включения через конденсатор потечет ток Iз зарядки конденсатора (рис. 1).
Как только конденсатор зарядится, ток в цепи станет равным 0. Если конденсатор отключить от источника GB, то заряд накопленный в конденсаторе сохраниться. Если конденсатор отключить от источника GB и подключить к резистору R (рис. 2), то через резистор потечет ток разряда конденсатора Iр. Заряд накопленный в конденсаторе расходуется на разогрев резистора и в конечном итоге конденсатор разрядится.
На графике накопление заряда конденсатором выглядит как показано на рисунке 1.



Время заряда конденсатора зависит от ёмкости конденсатора (при одинаковом приложенном напряжении). Чем больше ёмкость конденсатора, тем больше время заряда. Аналогичная картина (Рис. 2) наблюдается при разрядке конденсатора на сопротивление. При одинаковом сопротивлении время разряда больше у конденсатора с большей ёмкостью.

КОНДЕНСАТОР В ЦЕПИ ПЕРЕМЕННОГО ТОКА.

Если напряжение приложенное к емкостному элементу, будет изменяться по амплитуде (переменное напряжение),то будет изменяться и заряд конденсатора, то есть в емкостном элементе появится ток.


Ток Ic проходящий через конденсатор зависит от частоты f приложенного переменного напряжения и ёмкости С конденсатора. Если для постоянного тока сопротивление конденсатора можно считать равным бесконечности, то для переменного тока конденсатор обладает определённым сопротивлением. Сопротивление конденсатора переменному току Rc рассчитывается по формуле показанной на рисунке.
В формуле расчета емкостного сопротивления переменному току частота выражается в герцах, а емкость конденсатора в фарадах. Из формулы видно, что с увеличением частоты f при неизменной емкости конденсатора сопротивление Rc снижается, аналогично с увеличением емкости конденсатора при неизменной частоте сопротивление Rc так же снижается. Конденсаторы, так же как и резисторы, для получения заданной емкости Со можно включать параллельно и последовательно. Формулы расчета результирующей емкости показаны на рисунке.


КОНСТРУКЦИЯ, ПАРАМЕТРЫ И ТИПЫ КОНДЕНСАТОРОВ.

Предположим, что мы конструируем конденсатор и попробуем, уже обладая определенными знаниями, рассчитать емкость конденсатора. Как известно, емкость конденсатора зависит от площади обкладок S, расстояния между обкладками d и диэлектрической проницаемости применяемого диэлектрика Er. Обкладки конденсатора изготавливаются из металлов с хорошей электрической проводимостью - алюминий, медь, серебро, золото. Емкость конденсатора не зависит от толщины обкладок, поэтому чем тоньше обкладки конденсатора, тем лучше - экономим металл и уменьшаем геометрический объём конденсатора.


Расстояние d не должно быть слишком малым, во избежание электрического пробоя диэлектрика.
Выберем в качестве диэлектрика наиболее распространенный материал - гетинакс с Er равной 6 ... 8. Примем Er для нашего конденсатора равной 7.


Площадь S вычисляется для одной обкладки конденсатора при условии, что линейные размеры обкладок одинаковы. Если одна из обкладок имеет меньшие длину или ширину то площадь вычисляется для меньшей обкладки.
Все размеры - длина и ширина обкладок и расстояние между ними должны быть выражены в метрах. Примем размеры такие, какие показаны на рисунке. Подставим в формулу расчета емкости конденсатора наши данные: C = Er * Eo * S / d;
C = 7 * 8.854*10-12 * 0.0025 / 0.001= 0.000000000155Ф (фарады).
Возведем полученный результат в 12 степень чтобы получить значение емкости в пикофарадах:
C = 0.00000000015512 = 155пФ.
Полученная нами ёмкость конденсатора 155пф очень мала, обычно такие ёмкости используются в аппаратуре работающей на высоких частотах переменного тока порядка 1 - 600 МГц (мегагерц).
Представьте себе, что мы разрабатываем миниатюрный карманный радиоприемник в котором требуется порядка 30 таких конденсаторов.

Если мы установим в схему 30 разработанных нами конденсаторов, не считая других необходимых радиодеталей, то наш радиоприемник никак не получится миниатюрным. Все дело в том, что объём только наших конденсаторов получится таким, что его никак нельзя будет назвать приемлемым.
Объем одного конденсатора Vc равен Vc = 5см * 5см * 0,1см
Vc = 2,5см в кубе. Тогда объем 30 конденсаторов будет равен:
V = 30 * 2,5 = 75см в кубе.
Что делать, как быть, как уменьшить геометрический объем конденсатора для применения в миниатюрной радиоаппаратуре? Для решения этой проблемы максимально уменьшают расстояние между обкладками, тогда увеличивается емкость и уменьшается геометрический объем конденсатора. Но расстояние уменьшают до определенных пределов иначе конденсатор будет пробиваться даже при низком напряжении подаваемом на конденсатор. В связи с этим на каждом конденсаторе указывается напряжение которое он может выдержать.


Для уменьшения площади обкладок конденсатор делают многослойным состоящим как бы из нескольких параллельно включенных конденсаторов (вспомните формулу параллельного включения конденсаторов).
В качестве диэлектрика в миниатюрных конденсаторах используют тонкие пленки из синтетических материалов, а в качестве обкладок металлическую фольгу, чаще всего из алюминия.


На корпусе конденсатора, обычно, указывается его тип, емкость и рабочее напряжение. Остальные параметры конденсатора определяются из справочников. Емкость конденсатора указывается не так, как на электрических схемах. Например емкость 2,2пФ обозначается 2П2, емкость 1500 пФ - 1Н5, емкость 0,1 мкФ - М1, емкость 2,2 мкФ - 2М2, емкость 10 мкФ - 10М.
У обычных конденсаторов КМ, КД, МБМ и так далее трудно получить большую ёмкость при малых габаритах поэтому были разработаны так называемые электролитические конденсаторы у которых в качестве диэлектрика используется специальная электролитическая жидкость с очень большим Er. Ёмкость таких конденсаторов может достигать сотен тысяч микрофарад. К недостатку таких конденсаторов следует отнести низкое рабочее напряжение (до 500V) и обязательное соблюдение полярности при включении в схему.
Для настройки и подстройки некоторых типов радиоаппаратуры, например радиоприемник или телевизор, применяют специальные конденсаторы с изменяемой ёмкостью.



В зависимости от назначения такие конденсаторы называют "подстроечные" и "конденсаторы переменной емкости".
Емкость переменных и подстроечных конденсаторов изменяется механическим способом, путем изменения расстояния между обкладками или изменения площади пластин. В качестве диэлектрика в таких конденсаторах используется воздух или фарфор.
В заключение следует отметить, что в настоящее время, в связи с бурным развитием радиоэлектроники подстроечные и переменные конденсаторы практически не применяются. Их с успехом заменяют специальные фильтры и полупроводниковые приборы которые не требуют механического изменения параметров.


   ©Гуков Константин Михайлович 2006 - 2012     Почта: [email protected]